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Abstract—Most mobile visual search (MVS) systems query
a large database stored on a server. This paper presents a
new architecture for searching a large database directly on
a mobile device, which has numerous benefits for network-
independent, low-latency, and privacy-protected image retrieval.
A key challenge for on-device MVS is storing a memory-intensive
database in the limited RAM of the mobile device. We design
and implement a new compact global image signature called
the Residual Enhanced Visual Vector (REVV) that is optimized
for the local features typically used in MVS. REVV outperforms
existing compact database representations in the MVS setting and
attains similar retrieval accuracy in large-scale retrieval tests as
a Vocabulary Tree that uses 26× more memory. The compactness
of REVV consequently enables many database images to be
queried on a mobile device.

I. INTRODUCTION

Many mobile visual search (MVS) applications have been
successfully developed for recognition of outdoor landmarks
[1], product covers [2], and printed documents [3], [4],
amongst other categories. In each case, the user snaps a photo
with a mobile device to retrieve information about an object
of interest. Robust image-based recognition is achieved using
local scale-and-rotation-invariant features like SIFT [5], SURF
[6], CHoG [7], and RIFF [8].

Equally important for large-scale visual search is the method
used to index the billions of local features extracted for a
database containing millions of images. Sivic and Zisserman
developed the popular Bag-of-Features (BoF) framework [9].
Nı́ster and Stewenius subsequently extended the BoF frame-
work to use a large codebook of up to 1 million visual words
[10]. Their Vocabulary Tree (VT) and subsequent variants [11],
[12], [13] are widely used today.

Fig. 1(a) shows a possible architecture for MVS that relies
on a database stored in the cloud. On the mobile device,
features are extracted and encoded, and the features are trans-
mitted to a remote server. Then, on the server, the database
images are quickly scored using a data structure like the VT to
generate a ranked list of candidates, and geometric verification
is performed on the shortlist of the top-ranked candidates.
As mobile computing power and hardware resources improve,
operations typically performed on a server, like the database
search, can be performed directly on the mobile device, giving
rise to the new architecture shown in Fig. 1(b). Searching a
database directly on the mobile device has several advantages:
(1) In regions with unreliable or no cell phone service, a visual
query can still be performed with the mobile device. (2) We
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Fig. 1. Two different system architectures for mobile visual search. (a)
Feature extraction occurs on the mobile device, while database search occurs
on a remote server. (b) All operations occur on the mobile device.

can reduce traffic on a remote server that is already handling
many incoming queries. (3) Since no data are sent to a remote
server, the privacy of photos taken with the mobile device
is protected. (4) Querying the locally stored database can be
faster than querying a database on a remote server, because
data transmission delays are avoided. New mobile applications
can reap these benefits, provided there is a way to efficiently
store and search a large visual database on the mobile device.

A key challenge to performing on-device MVS is fitting the
entire database in the mobile device’s limited random access
memory (RAM). Mobile devices typically have two orders
of magnitude less RAM than a standard server. BoF-based
schemes can use up to 9 KB per image [14]. Additionally, a
VT with 1 million leaf nodes requires around 70 MB [15].
Thus, if we employ the VT for on-device MVS, the number
of database images that we can query is severely constrained
by the limited RAM.

Prior works have also recognized the need for a memory-
efficient database, although not for the on-device MVS sce-
nario. An image decomposition model for BoF-based retrieval
is presented in [16]. A compressed inverted index was de-
veloped for the VT in [14]. In an interesting new direction,
the Vector of Locally Aggregated Descriptors (VLAD) in
[17] and the Compressed Fisher Vector (CFV) in [18] both
create a compact global image signature by aggregating vector
residuals of descriptors quantized to a small set of visual
words.



In [17], [18], the retrieval systems that use VLAD and CFV
extract on average 3,000 Hessian-Affine SIFT features per
image. For MVS applications, however, low-latency retrieval
is very important, and extracting 3,000 Hessian-Affine SIFT
features per query image on a mobile device would be unac-
ceptably slow. In our past work, we have achieved feature
extraction latencies near 1 second per query on a mobile
device, using fast interest point and descriptor computations
and targeting around 500 features per image [2].

In this paper, we design a new compact global image
signature called the Residual Enhanced Visual Vector (REVV).
Like VLAD and CFV, REVV starts by generating visual
word residuals. However, REVV is optimized for fast on-
device MVS and has several new enhancements: (1) Im-
proved residual aggregation, using mean aggregation instead
of sum aggregation. (2) A new outlier rejection mechanism
for discarding unstable features during vector quantization.
(3) Classification-aware dimensionality reduction, using linear
discriminant analysis in place of principal component analysis.
(4) Discriminative weighting based on correlation between
image signatures in the compressed domain. With these en-
hancements, REVV attains similar retrieval performance as a
VT, while using 26× and 6× less memory than a VT with
uncompressed and compressed inverted indices, respectively.

The rest of the paper is organized as follows. First, Sec. II
reviews existing methods for large-scale image retrieval. Then,
Sec. III presents the design of our new compact signature for
on-device MVS. Experimental results in Sec. IV demonstrate
that REVV attains the same retrieval accuracy as a VT on two
large-scale data sets, while using substantially less memory.
The large memory savings directly translate into the ability to
search the signatures of many database images in the RAM of
a mobile device.

II. LARGE-SCALE RETRIEVAL TECHNIQUES

A VT is trained by hierarchical k-means clustering of many
database feature descriptors [10]. To have a discriminative
vocabulary, a large number of visual words, e.g., 1 million,
must exist at the leaf level. Misclassification through the
VT can be alleviated using greedy-N best paths [11], where
the N most promising paths are explored at each level, and
soft binning [12], where each descriptor is assigned with
fractional counts to the M nearest visual words. Each image
is represented as a histogram of visit counts over the visual
words. Throughout the rest of the paper, we use a VT with
k = 1 million visual words, N = 10 for greedy-N best paths,
and M = 3 for soft binning, as we find these parameters yield
very good retrieval performance.

VLAD [17] differs from the VT in that it can attain good
retrieval performance using a much smaller set of visual words,
typically just k = 64 to k = 256 words trained by flat k-
means clustering. VLAD computes (1) the vector difference
between each feature descriptor and the nearest visual word,
which is called a word residual (WR) and (2) the sum of WRs
surrounding each visual word. The aggregated WRs for all
k visual words are concatenated together to form an image

signature. For a memory-efficient representation, principal
component analysis (PCA) and product quantization (PQ) are
subsequently applied to the WR vector. In the next section,
we will show how to enhance the discriminative capability of
WR-based schemes to build a compact database representation
for large-scale MVS.

III. DESIGN OF RESIDUAL ENHANCED VISUAL VECTOR

Fig. 2(a) shows an overview for REVV, depicting how a
compact image signature is formed for a query image and
then compared against database REVV signatures to produce
a ranked list of database candidates. We will explain each
block in detail in the following sections.
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Fig. 2. (a) Overview of how feature descriptors for a query image are
converted into a REVV signature and compared against database REVV
signatures. (b) Visual words, feature descriptors, and sets of word residuals.

A. Image-Level Receiver Operating Characteristic

To systematically optimize the performance of REVV, we
first employ an image-level receiver operating characteristic
(ROC). Later in Sec. IV, we will validate our signature’s
performance on large-scale retrieval tests. For training, 16,000
matching and 16,000 non-matching image pairs are collected
from the Oxford Buildings Data Set [19] and the University
of Kentucky Benchmark Data Set [20]. For testing, 8,000
matching and 8,000 non-matching image pairs are collected
from the Stanford Media Cover Data Set [21] and the Zurich
Buildings Data Set [22]. Since we target low-latency MVS,
we extract around 500 SURF features per image, which takes
about 1 second on a mobile device [2].

B. Aggregation Type

Let c1, · · · , ck be the set of d-dimensional visual words.
As illustrated in the toy example of Fig. 2(b) with k = 3,
after each descriptor in an image is quantized to the nearest
visual word, a set of vector WRs will surround each visual
word. Let V (ci) = {vi,1, vi,2, · · · , vi,Ni} represent the set of
Ni separate WRs around the ith visual word. To aggregate the
WRs, several different approaches are possible:

• Sum aggregation: This is the approach used by VLAD
[17]. Here, the aggregated WR for the i th visual word is
Si =

∑Ni

j=1 vi,j . Note that Si ∈ �d.

• Mean aggregation: We normalize the sum of WRs by the
cardinality of V (ci), so the aggregated WR becomes Si =
1/Ni ·

∑Ni

j=1 vi,j .



• Median aggregation: This is similar to mean aggregation,
except we find the median along each dimension, i.e.,
Si(n) = median {vi,j(n) : j = 1, · · · , Ni} n = 1, · · · , d.
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Fig. 3. (a) ROCs for Vocabulary Tree (VT) and Word Residuals (WRs)
with three aggregation methods. (b) ROCs for VT and WRs with and without
outlier rejection.

Next, let S be the concatenation of aggregated WRs: S =
[S1 S2 · · · Sk] ∈ �kd. A normalized image signature S̄ is
formed as S̄ = S/ ||S||2. To compare two normalized image
signatures S̄q and S̄d, we compute their Euclidean distance∣∣∣∣S̄q − S̄d

∣∣∣∣
2
, or equivalently the inner product

〈
S̄q, S̄d

〉
.

The ROCs of the three aggregation methods are shown in
Fig. 3(a) for k = 128 visual words, along with the ROC for
a VT with k = 1 million words. The same 64-dimensional
SURF features are used for each method. The sum-aggregated
WR, which is a version of VLAD without PCA or PQ,
has a performance gap compared to the VT in this MVS
setting. The mean-aggregated WR, which requires just one
additional division per visual word compared to the sum-
aggregated WR, performs substantially better. Furthermore,
the mean-aggregated WR performs slightly better than the
median-aggregated WR, which is more expensive to compute.

C. Outlier Feature Rejection

Some features that lie close to the boundary between
two Voronoi cells reduce the repeatability of the aggregated
residuals. Consider the feature that lies very near the boundary
between the Voronoi cells of c1 and c3 in Fig. 2(b). Even a
small amount of noise can cause this feature to be quantized
to c3 instead of c1, which would significantly change the com-
position of V (c1) and V (c3) and consequently the aggregated
residuals S1 and S3.

We can remove this type of “outlier feature” by exploiting
the fact that for a given visual word, its outlier features
are those farthest away from the visual word. By discarding
every feature whose distance is above the C th percentile on a
distribution of distances, we can effectively remove most of the
outlier features. Note that the C th percentile level is different
for the various visual words, because the distance distributions
are different. Experimentally, we found that C = 90 is the
best value. Using outlier rejection, a significant improvement
in ROC can be observed in Fig. 3(b).

D. Power Law

Applying a power law to the WRs has been found helpful
for reducing peaky components which are difficult to match
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Fig. 4. (a) ROCs for VT and WRs with and without power law. (b) ROCs
for VT and WRs with no transform (full 64 dimensions per word), with PCA
(32 dimensions per word), and with LDA (32 dimensions per word).

[18]: SPL = [S(1)α · · · S(kd)α] , α ∈ [0, 1]. An L2 normaliza-
tion follows the power law to generate a normalized image
signature. Experimentally, we found the optimal value for the
exponent is α = 0.4 for SURF features. Fig. 4(a) shows the
positive improvement in the ROC when we apply a power law.

E. Classification-Aware Dimensionality Reduction

Since the WR dimensionality is proportional to the size of
the database, we want to reduce the dimensionality as much as
possible, without adversely impacting retrieval performance.
VLAD [17] and CFV [18] both use principal component
analysis (PCA) for dimensionality reduction. In contrast, we
develop a classification-aware method for reducing the dimen-
sionality using linear discriminant analysis (LDA). We define
the problem as follows for each visual word separately:

Sj = aggregated WR from image j

JM = {(j1, j2) : images j1 and j2 are matching}
JNM = {(j1, j2) : images j1 and j2 are non-matching}

maximize
w

∑
(j1,j2)∈JNM

〈w, Sj1 − Sj2〉2∑
(j1,j2)∈JM

〈w, Sj1 − Sj2〉2
(1)

The objective in Eq. (1) is to maximize the ratio of inter-
class variance to intra-class variance by varying the projection
direction w. This problem is similar to that defined in [23] for
reducing the dimensionality of feature descriptors, except here
we are concerned with reducing the dimensionality of WRs.
Eq. (1) can be solved as a generalized eigenvector problem,
with the following solution:

RNMwi = λiRMwi i = 1, 2, · · · , dLDA (2)

Rθ =
∑

(j1,j2)∈Jθ

(Sj1 − Sj2 ) (Sj1 − Sj2)
T

θ ∈ {M,NM}

We retain the dLDA most energetic components after projection.
In Fig. 4(b), we plot the ROC for (1) WR without any
transform, with 64 dimensions/word, (2) WR with PCA, with
32 dimensions/word, and (3) WR with LDA, also with 32
dimensions/word. PCA performs similarly as the case with
no transform, while LDA outperforms the two other WR
schemes. With LDA, we can reduce the image signature’s
dimensionality in half, while actually boosting the retrieval
performance.



F. Fast Score Computation and Discriminative Weighting

Following LDA, each component of the projected WR is
binarized to +1 or -1 depending on the sign. As in [18], this
binarization creates a compact image signature that just re-
quires at most k ·dLDA bits. Another benefit of the binarization
is fast score computation. The inner product

〈
S̄q, S̄d

〉
can be

closely approximated by the following expression:

1∣∣∣
∣∣∣Sbin

q

∣∣∣
∣∣∣
2

∣∣∣
∣∣∣Sbin

d

∣∣∣
∣∣∣
2

∑
i visited in common

C
(

Sbin
q,i, Sbin

d,i

)
︸ ︷︷ ︸

Ci

(3)

where C
(

Sbin
q,i, Sbin

d,i

)
= dLDA − 2H

(
Sbin
q,i, Sbin

d,i

)
is the binary

correlation, H(A,B) is Hamming distance between binary
vectors A and B, and Sbin

q and Sbin
d are the binarized WRs for

the query and database images, respectively. Since Hamming
distance can be computed very quickly using bitwise XOR and
POPCOUNT, the score in Eq. 3 can be efficiently calculated.
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Fig. 5. (a) Distributions of binary correlation per visual word, for matching
(blue o) and non-matching (red x) image pairs. (b) Weights for different binary
correlation values. (c) ROCs for VT, REVV, and basic WR scheme.

Finally, we apply a discriminative weighting based on
correlations computed between binarized signatures. Fig. 5(a)
plots two distributions: (1) the distribution pM (C) of binary
correlation per visual word for matching images pairs, and (2)
the analogous distribution pNM (C) for non-matching image
pairs. It can be observed that on average matching image
pairs exhibit higher binary correlation values, and we design a
weighting function w(C) as follows that exploits this property:

w(C) =
pM (C)

pM (C) + pNM (C)
(4)

Assuming Pr {match} = Pr {non-match}, then w(C) is exactly
equal to Pr {match|C}. Using this weighting function, which
is plotted in Fig. 5(b) the score changes from Eq. (3) to:

1∣∣∣
∣∣∣Sbin

q

∣∣∣
∣∣∣
2

∣∣∣
∣∣∣Sbin

d

∣∣∣
∣∣∣
2

∑
i visited in common

w (Ci) · Ci (5)

The weighting function effectively rewards observations with
higher binary correlation values.

After applying the weighting, we obtain the ROC for REVV
plotted in Fig. 5(c), where it can be seen that REVV with
k = 128 visual words performs very close to the VT with
k = 1 million words. For comparison, the basic WR scheme
(black curve from Fig. 3(a)) is also included in the plot. With
our new enhancements, REVV significantly outperforms the
basic WR scheme in the MVS setting. In the next section,
we will see that REVV has similar retrieval performance to
the VT in large-scale tests, while requiring significantly less
memory to store the database.

IV. EXPERIMENTAL RESULTS

A. Large-Scale Retrieval Performance

We test the retrieval performance of REVV versus the VT
on two data sets: (1) the Stanford YouTube Data Set [24],
where the database consists of 1 million keyframes taken from
over 2,000 YouTube video clips, and the query set contains
1,224 viewfinder frames captured by camera phones, and (2)
the Stanford MVS Data Set [25], where the database consists
of 1,200 labeled “clean” images of various objects and 1
million distractor images, and the query set contains 3,300
images of the same objects taken with different camera phones.
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Fig. 6. Recall for (a) Stanford YouTube and (b) Stanford MVS Data Sets.

Fig. 6 plots the recall versus database size for both data
sets. For the YouTube Data Set, REVV with k = 128 words
achieves recall within 2 percent relative to that of the VT
with k = 1 million words. Similarly, for the MVS Data Set,
REVV performs comparably as the VT, achieving recall within
3 percent relative to that of the VT. As database size increases,
the recall rates of the two schemes closely track one another.

B. Memory Usage

Fig. 7 plots the memory usage per database image for
three schemes: (1) VT with an uncompressed index, (2)
VT with a compressed index [14], and (3) REVV. Memory
usage is generally lower for the YouTube Data Set versus
the MVS Data Set because of temporal correlations between
keyframes and fewer features per image. Index compression
for VT yields 5− 6× memory savings relative to the VT with
uncompressed index. In contrast, REVV provides far greater
savings: memory usage is shrunk 24 − 26× from that of the
VT with uncompressed index.
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Fig. 7. Memory usage per database image for (a) Stanford YouTube and (b)
Stanford MVS Data Sets.

Suppose a smartphone has 256 MB of RAM, 64 MB are
used by the operating system, and 128 MB are consumed by
other applications. An MVS application would then have 64
MB available. If we use 64-dimensional SURF descriptors,
a VT with k = 1 million leaf nodes requires 70 MB [15]
and thus would not fit in our 64 MB budget. In contrast, if
we employ REVV with the same SURF features, we would
require just 264 KB to store k = 128 centroids and dLDA =
32 eigenvectors per centroid, provided we again use 8 bits
per dimension. On top of that, each database image’s REVV
signature consumes just 0.35 KB.

We have recently developed a landmark recognition appli-
cation on a Nokia N900 smartphone, which has a 600 MHz
ARM processor and 256 MB of total RAM. We store REVV
signatures for 10, 000 images of San Francisco landmarks
in the phone’s RAM. Using the architecture of Fig. 1(b),
our application achieves a mean latency of 1.6 seconds per
query, which is remarkably fast considering that the entire
recognition process occurs on the phone. Thus, we can provide
fast responses for real-time mobile augmented reality, without
any assistance from an external server.

V. CONCLUSIONS

We have developed a new discriminative, compact global
image signature called REVV that is optimized for on-
device MVS applications. By incorporating improved mean
aggregation, outlier feature rejection, dimensionality reduction
with LDA, and discriminative correlation weighting, REVV
noticeably outperforms existing word residual schemes in the
MVS setting. In large-scale tests, REVV attains similar re-
trieval accuracy as a VT that uses significantly more memory.
The compactness of REVV enables the signatures for many
database images to be stored in the limited RAM of a mobile
device, which greatly improves the quality of visual search
results in many applications including large-scale landmark
recognition and product recognition.
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