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ABSTRACT
Detecting text in natural images is an important prerequisite. In
this paper, we propose a novel text detection algorithm, which em-
ploys edge-enhanced Maximally Stable Extremal Regions as basic
letter candidates. These candidates are then filtered using geomet-
ric and stroke width information to exclude non-text objects. Letters
are paired to identify text lines, which are subsequently separated
into words. We evaluate our system using the ICDAR competition
dataset and our mobile document database. The experimental results
demonstrate the excellent performance of the proposed method.

Index Terms— Text detection, maximally stable extremal re-
gions, connected component analysis

1. INTRODUCTION

Mobile visual search has gained popular interest with the increasing
availability of high-performance, low-cost camera-phones. In recent
years, visual search systems have been developed for applications
such as product recognition [1, 2] and landmark recognition [3]. In
these systems, local image features [4, 5, 6] are extracted from im-
ages taken with a camera-phone and are matched to a large database
using visual word indexing techniques [7, 8]. Although current vi-
sual search technologies have reached a certain level of maturity,
they have largely ignored a class of informative features often ob-
served in images: text. In fact, text is particularly interesting be-
cause it provides contextual clues for the object appearing inside an
image. Given the vast number of text-based search engines, retriev-
ing an image using the embedded text offers an efficient supplement
to the visual search systems.

As an essential prerequisite for text-based image search, text
within images has to be robustly located. However, this is a chal-
lenging task due to the wide variety of text appearances, such as
variations in font and style, geometric and photometric distortions,
partial occlusions, and different lighting conditions. Text detection
has been considered in many recent studies and numerous methods
are reported in the literature [9, 10, 11, 12, 13, 14, 15, 16, 17]. These
techniques can be classified into two categories: texture-based and
connected component (CC)-based.

Texture-based approaches view text as a special texture that is
distinguishable from the background. Typically, features are ex-
tracted over a certain region and a classifier (trained using machine
learning techniques or by heuristics) is employed to identify the ex-
istence of text. In [11], Zhong et al. assume text has certain hori-
zontal and vertical frequencies and extract features to perform text
detection in the discrete cosine transform domain. Ye et al. collect
features from wavelet coefficients and classify text lines using SVM
[12]. Chen et al. feed a set of weak classifiers to the Adaboost algo-
rithm to train a strong text classifier [13, 14].

(a) Detected MSER (b) Text candidates (c) Detected text

Fig. 1. Extracting text from a natural image. (a): Detected MSER
for dark objects on bright background. (b): After geometric and
stroke width filtering, text candidates are pairwise grouped to form
text lines. The text lines are shown by the red lines. (c): Text line
verification rejects false positives and the detected text is highlighted
by the blue box.

As opposed to texture-based methods, the CC-based approach
extracts regions from the image and uses geometric constraints to
rule out non-text candidates. The top scoring contestant in [15] ap-
plies an adaptive binarization method to find CCs. Text lines are then
formed by linking the CCs based on geometric properties. Recently,
Epshtein et al. [16] proposed using the CCs in a stroke width trans-
formed image, which is generated by shooting rays from edge pixels
along the gradient direction. Shivakumara et al. extract CCs by per-
forming K-means clustering in the Fourier-Laplacian domain, and
eliminate false positives by using text straightness and edge density
[17].

In this work, we propose a novel CC-based text detection algo-
rithm, which employs Maximally Stable Extremal Regions (MSER)
[18] as our basic letter candidates. Despite their favorable proper-
ties, MSER have been reported to be sensitive to image blur [19].
To allow for detecting small letters in images of limited resolution,
the complimentary properties of Canny edges and MSER are com-
bined in our edge-enhanced MSER. Further we propose to generate
the stroke width transform image of these regions using the distance
transform to efficiently obtain more reliable results. The geomet-
ric as well as stroke width information are then applied to perform
filtering and pairing of CCs. Finally, letters are clustered into lines
and additional checks are performed to eliminate false positives. The
overall process of the text detection is illustrated in Fig. 1. In com-
parison to previous text detection approaches, our algorithm offers
the following major advantages. First, the edge-enhanced MSER de-
tected in the query image can be used to extract feature descriptors
like [4, 5] for visual search. Hence our text detection can be com-
bined with visual search systems without further computational load
to detect interest regions. Further, our system provides a reliable
binarization for the detected text, which can be passed to OCR for
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Fig. 2. System flowchart

text recognition. Finally, the proposed algorithm is simple and effi-
cient. MSER as well as the distance transform can be very efficiently
computed [20, 21] and determining the stroke width only requires a
lookup table (Section 2.3).

The remainder of this paper is organized as follows. In Section
2, we describe the individual steps of our text detection algorithm.
Section 3 demonstrates the robust performance of the proposed sys-
tem and Section 4 concludes the paper.

2. THE TEXT DETECTION ALGORITHM

The flowchart of our text detection algorithm is shown in Fig.2. At
the input of the system, the image intensities are linearly adjusted
to enhance the contrast. Subsequently, MSER regions are efficiently
extracted from the image [20] and enhanced using Canny edges ob-
tained from the original gray-scale image (Section 2.1). As a next
step, the resulting CCs are filtered using geometric constraints on
properties like aspect ratio and number of holes (Section 2.2). The
stroke width information is robustly computed using a distance trans-
form (Section 2.3) and objects with high variation in stroke width
are rejected. Text candidates are grouped pairwise and form text
lines. Finally, words within a text line are separated, giving seg-
mented word patches at the output of our system.

2.1. Edge-enhanced MSER

As the intensity contrast of text to its background is typically sig-
nificant and a uniform intensity or color within every letter can be
assumed, MSER is a natural choice for text detection. While MSER
has been identified as one of the best region detectors [19] due to
its robustness against view point, scale, and lighting changes, it is
sensitive to image blur. Thus, small letters cannot be detected or
distinguished in case of motion or defocus blur by applying plain
MSER to images of limited resolution. Fig. 3a shows an example
where multiple letters are identified as a single MSER region. To
cope with blurred images we propose to combine the complimentary
properties of Canny edges [22] and MSER. The outline of extremal
regions can be enhanced by applying the precisely located but not
necessarily connected Canny edges. As shown in Fig.3a, we remove
the MSER pixels outside the boundary formed by the Canny edges.
This is achieved by pruning the MSER along the gradient directions
(indicated by the blue arrows) computed from the original gray-scale
image. Since the type of the letter (bright or dark) is known during
the MSER detection stage, the gradient directions can be adapted to
guarantee that they point towards the background. Fig.3b shows the
edge-enhanced MSER, which provides a significantly improved rep-
resentation of the text where individual letters are separated. This not
only improves the performance of geometric filtering (Section 2.2),
but also increases the repeatability of MSER based feature matching
under different image blur conditions.

(a)

(b)

Fig. 3. Edge-enhanced MSER. (a) Detected MSER for blurred text.
Canny edges are shown in red lines and the blue arrows indicate
gradient directions. (b) MSER after pruning along the gradient.
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(b) stroke width image

Fig. 4. Finding the stroke width information. (a) The distance trans-
formed image. (b) Stroke width image is formed by propagating the
stroke width information from the ridge to the boundary. The num-
bers label half of the stroke width.

2.2. Geometric Filtering

With the extraction of edge-enhanced MSER, we obtain a binary
image where the foreground CCs are considered as letter candidates.
As in most state-of-the-art text detection systems, we perform a set
of simple and flexible geometric checks on each CCs to filter out
non-text objects. First of all, very large and very small objects are
rejected. Then, since most letters have aspect ratio being close to 1,
we reject CCs with very large and very small aspect ratio. A con-
servative threshold on the aspect ratio is selected to make sure that
some elongated letters such as ‘i’ and ‘l’ are not discarded. Lastly,
we eliminate objects which contain a large number of holes, because
CCs with many holes are unlikely to be letter candidates.

2.3. Finding Stroke Width by Distance Transform

The importance of stroke width information has been emphasized in
several recent studies [23, 24, 16]. Motivated by Epshtein’s work
on the Stroke Width Transform (SWT) [16], we develop an image
operator to transform the binary image into its stroke width image.
The stroke width image is of the same resolution as the original im-
age, with the stroke width value labeled for every pixel. We deter-
mine the stroke width using a novel approach based on the distance
transform, which differs drastically from the SWT proposed in [16].
Epshtein’s SWT forms CCs by shooting rays from the edge pixels
along the gradient, and only keeps the rays if they are terminated
by another edge pixel having the opposite gradient direction. This
method does not work well when the opposite stroke edges are not
parallel. Consequently, the stroke width CCs formed by the SWT
often have undesirable holes appearing in curved strokes or stroke
joints. In contrast to the SWT, our proposed method guarantees that



the SW information is provided at every pixel of the original CC with
any stroke shape. In our algorithm, the Euclidean distance transform
is applied to label each foreground pixel with the distance to its near-
est background pixel. As can be seen in Fig.4a, the ridge values of
the distance map correspond to half the width of the stroke. Then, we
propagate the stroke width information from the ridge to the bound-
ary of the object, along the “downhill” direction. The stroke width
image is shown in Fig.4b. Our method bypasses the need to locate
ridge pixels by iteratively propagating the stroke width information,
starting from the maximum value to the minimum value of the dis-
tance map. The procedure is outlined in Algorithm 1.

Algorithm 1 Finding stroke width

Input: binary image BW
Output: stroke width image SW

D := DistanceTransform(BW);
D := round(D);
for p = each foreground pixel in D do

pVal := D(p);
LookUp(p) := p’s 8 neighbors whose value < pVal;

end for
{LookUp can be efficiently computed without FOR loop.}
MaxStroke := max(D);
for Stroke = MaxStroke to 1 do

StrokeIndex := find(D==Stroke);
NeighborIndex = Lookup(StrokeIndex);
while NeighborIndex not empty do

D(NeighborIndex) := Stroke;
NeighborIndex := Lookup(NeighborIndex);

end while
end for
return SW := D;

The output of the Algorithm 1 is an image where each pixel is
assigned a value equal to half of the stroke width. Assuming that the
stroke width of characters has a low variation, we exclude CCs with
a large standard deviation. The rejection criterion is std/mean >
0.5, which is invariant to scale changes. This threshold was obtained
from the training set of the ICDAR competition database.

2.4. Text Line Formation and Word Separation

Text lines are important cues for the existence of text, as text almost
always appear in the form of straight lines or slight curves. To de-
tect these lines, we first pairwise group the letter candidates using
the following rules. As letters belonging to the same text line are
assumed to have similar stroke width and character height, two let-
ter candidates are paired if the ratio of their stroke width medians is
lower than 1.5 and their height ratio is lower than 2 (taking upper
and lower case letters into account). Additionally, two CCs should
not be paired if they are very distant.

Subsequently, text lines are formed based on clusters of pairwise
connected letter candidates. A straight line is fitted to the centroids
of pairs of letter candidates within each cluster and the line that in-
tersects with the largest number of text candidates is accepted. The
process is iterated until all text candidates have been assigned to a
line, or if there are less than three candidates available within the
cluster. A line is declared to be a text line if it contains three or more
text objects.

We filter out improbable text lines by two additional validation
steps. As shown in Fig. 1b, a false text line is formed along the repet-
itive windows. Repeating structures such as windows and bricks

are commonly seen in urban images, resulting a large number of
false positives. This can be avoided by applying template matching
among the letter candidates. A text line is rejected if a significant
portion of the objects are repetitive. Also, based on the observation
that most letters have low solidity (proportion of the object pixels in
the convex hull), a text line is rejected if most of the objects within
that line have a very large solidity.

As a final step, text lines are split into individual words by clas-
sifying the inter letter distances into two classes: the character spac-
ings and the word spacings. We calculate the distance between the
vertical projections of each character along the text line and perform
a two class classification using the Otsu’s method [25].

3. EXPERIMENTAL RESULTS

To evaluate our text detection algorithm, we apply it to two differ-
ent test sets. As a primary test we use the well-known ICDAR text
detection competition data set [26, 15], which was also used as a
benchmark for [16, 27, 28]. Further, we apply our algorithm to a
document database, which we have created to test a document re-
trieval system based on text as well as low bit rate features in [29].
The results are shown in the following sections.

3.1. ICDAR Text Detection

Two competitions (ICDAR 2003 and 2005) have been held to
evaluate the performance of various text detection algorithms
[26, 15]. To validate the performance of our proposed system,
we use the metrics defined in [15] and run our algorithm on the
ICDAR competition dataset. The precision and recall are defined as
p =

∑
re∈E m(re, T )/|E| and r =

∑
rt∈T m(rt, E)/|T |, where

m(r,R) is the best match for a rectangle r in a set of rectangles R,
E and T are our estimated rectangles and the ground truth rectangles
respectively. An f metric is used to combine the precision and recall
into one single measure: f = 1/(α/p+α/r), where α = 0.5 gives
equal weights to precision and recall. Since it is unlikely to produce
estimated rectangles which exactly align with the manually labeled
ground truth, the f metric can vary from 0.8 − 1.0 even when all
text is correctly localized.

We show the text detection performance on the dataset in Ta-
ble 1. The results in the lower half include the contestants in [26, 15],
where Hinnick Becker’s approach achieves the highest f score of
0.62. The upper half contains the results of our text detection sys-
tem and the state-of-the-art algorithms. Our algorithm achieves an f
score similar to Epshtein [16], outperforming all results from the text
detection competition. The complexity of our overall detection sys-
tem is mainly driven by the MSER extraction stage, which requires
less than 200 ms for an image resolution of 1280x960 on a 2.5 GHz
CPU.

3.2. Document Title Text Detection

As a second test we apply the proposed text detection system to per-
form a mobile paper search by recognizing the document title in
images recorded with a camera-phone and querying databases like
Google Scholar in [29]. The first step for such a mobile paper search
system is to detect the title text within the document images as shown
in Fig. 5. The performance of our text detection algorithm is evalu-
ated by checking the correctly detected bounding boxes around the
title text. We use a stringent criterion and declare a title to be cor-
rectly detected only when all letters within the title are detected. Out



Table 1. Evaluation of text detection algorithms.

Algorithm precision recall f

Our system 0.73 0.60 0.66
Epshtein [16] 0.73 0.60 0.66
Minetto [27] 0.63 0.61 0.61
Fabrizio [28] 0.46 0.39 0.43

Hinnerk Becker 0.62 0.67 0.62
Alex Chen 0.60 0.60 0.58
Ashida 0.55 0.46 0.50
HWDavid 0.44 0.46 0.45
Wolf 0.30 0.44 0.35
Qiang Zhu 0.33 0.40 0.33
Jisoo Kim 0.22 0.28 0.22
Nobuo Ezaki 0.18 0.36 0.22
Todoran 0.19 0.18 0.18
Full 0.10 0.06 0.08

of 501 SVGA size images, we are able to correctly identify 477 ti-
tles, achieving a performance score of 95%. The cases where the
detection fails are due to excessive blur and out of focus.

Fig. 5. Document images under various viewpoints.

4. CONCLUSION

In this work, a novel text detection algorithm is proposed, which em-
ploys Maximally Stable Extremal regions as basic letter candidates.
To overcome the sensitivity of MSER with respect to image blur and
to detect even very small letters, we developed an edge-enhanced
MSER which exploits the complimentary properties of MSER and
Canny edges. Further, we present a novel image operator to ac-
curately determine the stroke width of binary CCs. Our proposed
method has demonstrated state-of-the-art performance for localizing
text in natural images. The detected text are binarized letter patches,
which can be directly used for text recognition purposes. Addition-
ally, our system can be efficiently combined with visual search sys-
tems by sharing MSER as interest regions.
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