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ABSTRACT

Despite being a highly distinctive feature, the potential of text in

images for mobile visual search has been largely neglected. Our re-

search reported in this paper strives to improve mobile visual search

by incorporating algorithms and compact representations tailored to

visual text. We develop a new word patch descriptor, called Word

Histogram of Oriented Gradients (Word-HOGs). The descriptor is

based on gradient orientation histograms and can be compressed to

a very small size using context-based arithmetic coding with lattice

quantization. Because of its special structure, we can build image

features from the descriptor and use these features for large-scale

word patch matching. We show that the Word-HOG descriptor has

a word patch matching performance that is better or comparable to

the state-of-the-art approaches while being more efficient in feature

counts, and it can be highly compressed with negligible loss in re-

trieval performance..

Index Terms— Mobile visual search, Visual text

1. INTRODUCTION

Text in images is highly distinctive because it has been designed

that way. However, in mobile visual search applications, visual text

information is usually treated like any other part of the image. Typi-

cally, interest points, such as Laplacian of Gaussian (LoG) [1] or Dif-

ference of Gaussian (DoG) [2] points, are detected and descriptors

characterizing the image around each interest point are extracted.

Then, the descriptors are compressed and sent to an image database

for visual search. For text, the detected interest points are at a very

small scale or at repetitive locations. When extracting descriptors

from these interest points, many descriptors are very similar. Thus,

this approach results in a representation that is inefficient and often

ineffective. Thus, a new descriptor tailored to visual text is needed..

Our new descriptor should perform well for matching visual text

information. It should also be efficient for finding matches in large-

scale databases. Furthermore, the size of the descriptor should be

compact and the generation or extraction of the descriptor should be

computationally efficient. For mobile visual search applications, the

client is a camera-phone capable of taking pictures and processing

the pictures, but with limited memory. Thus, large visual search

databases are placed on a remote server. Hence, query data are sent

from the mobile client to the server for matching. It is critically

important to reduce the amount of query data sent to minimize the

system transmission latency and device power usage [3].

Several approaches to describe word patches have been pro-

posed. In [4], binarized word images were compared with one an-

other based on template matching, which the authors referred to as

word spotting. Later, features based on projection profiles [5, 6, 7],

foreground or stroke density [8, 9, 10] have been developed. These

methods are mostly designed for matching historical scripts by using

dynamic time warping [5] or elastic matching [11] to deal with the

variations in the script. However, most of these require segmenting

the font from the background and are sensitive to incorrect segmen-

tation caused by variation in lighting. Features that do not need to

distinguish text from background include wavelet features [12], di-

rectional patterns [13], and histogram of oriented gradients [14, 15].

However, the matching methods of these approaches do not scale

to large databases. Local image feature-based approaches to word

patch matching were investigated [16] for historical printed text. In

[17], Schroth combined image features with detected character po-

sitions. However, in [16] and [17], an additional detection step is

needed after the word patch location is given. While performing

well for matching, these methods do not address the query size effi-

ciency. Another possible solution is using Optical Character Recog-

nition (OCR) [18, 19] and the recognized text for description. How-

ever, for mobile visual search, this requires running an OCR engine

on the mobile device.

In this paper, we present a new word patch descriptor for mo-

bile visual search. We develop a new descriptor called Word His-

togram of Oriented Gradients (Word-HOGs). The Word-HOG is a

descriptor that is based on gradient orientation histograms. The de-

scriptor is a concatenation of gradient orientation histograms from

sub-blocks within a word patch. From the Word-HOG descriptor,

we generate SIFT-like [2] descriptors, which we call WSIFT, and

use the Vocabulary Tree (VT)-based approach [20] to perform word

patch matching. We show the matching pipeline performs reliable

matching while using fewer features than other approaches. We note

Word-HOG is similar to [14, 15], however, we differ in how gradient

orientation histograms are generated and how word patch matching

is performed. Furthermore, we develop a novel compression scheme

for Word-HOGs. We use lattice coding [21, 22, 23] to quantize the

descriptor and use a context-based arithmetic coder to compress the

query. Compressed Word-HOGs performs word patch matching at a

high accuracy with only a few tens of bytes.

The rest of the paper is organized as follows. Sec. 2 describes

how Word-HOGs are extracted from word patches and how they are

compressed. Then, Sec. 3 shows how Word-HOGs are used for word

patch matching. After that, Sec. 4 presents the experimental results

of the proposed approach.



2. WORD-HOGS FOR WORD PATCHES

2.1. Descriptor Generation

Fig. 1(a) shows a diagram of the Word-HOG extraction process.

Given an image, we assume that a rectangular box is tightly fit

around the text, where the box is typically found using a text detec-

tion algorithm [24]. The box is expanded by a factor of 1/m, and

a word patch is extracted from the location of the expanded box in

the image. Then, the patch is resized to a height of H pixels while

the aspect ratio is kept the same. Pre-blurring is applied to the word

patch using a Gaussian filter, similar to [2]. After that, the patch is

divided vertically into 4 rows, as shown in Fig. 1(b), and each row is

horizontally divided into sub-blocks that are 1/2n of the row height,

where n is an integer (> 0). For each sub-block, image gradients

are calculated and used to generate a gradient orientation histogram

with 8 bins. Both the number of rows and the dimensions of the

histogram were determined from patch matching experiments. Once

the gradient orientation histogram of each sub-block is generated,

the Word-HOG is formed by concatenating the histograms start-

ing from the top-left sub-block and following an order from top to

bottom and left to right. Sec. 4.1 will describe how the parameters

presented here are trained.
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(a) Word-HOG extraction diagram

h 

n
h
2n

  50

  100

  150

30

210

60

240

90

270

120

300

150

330

180 0

(b) Gradient histograms are extracted from sub-blocks

Fig. 1: The Word-HOG descriptor is generated from gradient orien-

tation histograms of sub-blocks in the word patch.

The Word-HOG descriptor is a variable length descriptor; its

length depends on the width of the word patch. Additionally, since

the descriptor is formed by gradient orientation histograms, the

descriptor can be efficiently compressed using lattice coding tech-

niques [21, 22, 23], as described in the next section.

2.2. Lossy Compression of Word-HOGs

To compress the Word-HOG descriptor, lattice coding is first used

to lossily compress the histogram of each sub-block. Then, context-

based arithmetic coding is used to encode the lattice indices.

Lattice Coding: The gradient orientation histogram is the distri-

bution of the image gradient directions within a sub-block. For a

normalized gradient orientation histogram of dimension m, the his-

togram vector lies on a probability simplex in m-dimensional space.

Lattice coding quantizes these histogram vectors to lattice points in

the probability simplex using the method described in [23], where

a quantization parameter, n, controls the density of points on the

simplex. The lattice points within the probability simplex are enu-

merated, hence, only an index is needed to represent the quantized

distribution.

Context-based Arithmetic Coding: Once the Word-HOG descrip-

tor is quantized using lattice coding, a set of lattice indices is pro-

duced. These indices are compressed using entropy coding to further

reduce the query size. Since the sub-block size is typically smaller

than the character strokes, a single stroke would appear in several

sub-blocks. For sub-blocks that contain the same stroke, the direc-

tion of the image gradients is similar. We exploit this relationship in

sub-blocks by using context-based arithmetic coding. Starting from

the top-left, the indices of each sub-block are entropy coded while

using the previously coded horizontal sub-block as context, as shown

in Fig. 2.

Fig. 2: The horizontal neighboring sub-block is used as context for

the context-based arithmetic coder for Word-HOGs.

3. WORD PATCH MATCHING WITH WORD-HOGS

To enable fast comparisons in large-scale word patch matching,

WSIFTs are generated from Word-HOGs and used in a VT to re-

trieve word patches. Sec. 3.1 describes how WSIFT descriptors are

generated, and Sec. 3.2 explains how they are used in VTs.

3.1. Generating WSIFT Descriptors

WSIFT is a gradient orientation histogram-based descriptor gener-

ated from a 4×4 spatial grid with square spatial bins, similar to SIFT

[2]. Within each spatial bins, image gradients are calculated and used

to generate a gradient orientation histogram. Since Word-HOGs are

constructed of gradient orientation histograms from rectangular sub-

blocks, they can be used to assemble WSIFT descriptors. Let us

consider the generation of the first WSIFT descriptor in the left-most

position of a word patch as shown in green in Fig. 3(b). To generate

the histogram for spatial bin A, we add up the histograms of sub-

blocks 1 and 5 of the Word-HOG, as labeled in Fig. 3(a). Similarly,

for spatial bin B, we add up the histograms of sub-blocks 2 and 6.

The process is repeated for all 4 × 4 spatial bins. Then, the his-

tograms are concatenated into to a 128-dimensional vector, and the

vector is normalized to have unit length forming the WSIFT descrip-

tor. After that, we move one horizontal sub-block step to the right to

generate the next WSIFT descriptor. We generate a series of WSIFT

descriptors along the horizontal direction.

Readers familiar with the implementation details of SIFT will

notice some subtle differences. We do not use magnitude weighting



- - 

- - 

- - 

- - 

1 5 

2 6 

3 7 

4 8 

9 13 

10 14 

11 15 

12 16 

25 29 

26 30 

27 31 

28 32 

17 21 

18 22 

19 23 

20 24 

33 37 

34 38 

35 39 

36 40 

- - 

- - 

- - 

- - 

- - 

- - 

- - 

- - 

(a) Sub-block indices of word patch

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 

P 

(b) Location of Left-most WSIFT

Fig. 3: (a) Part of the original image overlaid with sub-block indices.

(b) Spatial grid of the first WSIFT descriptor

but use only the gradient orientation to generate histogram directly.

We do not use soft binning for spatial bins but only for angular bins.

Furthermore, we omit the Gaussian weighting that de-emphasizes

the bins further away from the detected SIFT keypoints.

3.2. Matching with Vocabulary Trees

Given a set of word patches, we first train a word patch matching

database. Word-HOGs are extracted from every word patch and used

to generate their WSIFT descriptors. Then, hierarchical K-means

clustering (or Tree Structured Vector Quantization) is used to build a

VT with depth of D on the database WSIFT descriptors. After that,

we quantize all the WSIFT descriptors with the VT using a greedy

scheme [25] to generate the inverted indices used for fast lookup

[20]. This step completes the database training process.

A query is initiated when a query word patch is given. On the

client, a query word patch is extracted from the image and the Word-

HOG descriptor is extracted from the word patch. Then, the Word-

HOG is compressed and transmitted to the server where the database

is located. On the server, the Word-HOG is decoded and the WSIFT

descriptors are generated from the Word-HOG. Lastly, the WSIFT

descriptors are quantized through the VT and the inverted indices

are used to generate a list of matching database word patches.

From the VT matching, a list of ranked matching patches is gen-

erated. However, since the VT matching stage uses only image fea-

tures and not their locations, the matching does not guarantee fea-

tures are in geometrically consistent order. Thus, words that have the

same set of characters but in different order can be highly ranked in

the list. To differentiate them, we use Geometric Verification (GV) to

ensure that the matching features are geometrically consistent [26].
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Fig. 4: Block diagram of the geometric verification process.

We use a GV process as shown in Fig. 4. Similar to previous

approaches [2], features from two feature sets are paired based on

the descriptor L2 distance. But, instead of using distance ratio test

to reject false matches, distance threshold test is used with threshold

θ. This helps retain similar feature matches that appear in reoccur-

ring letters in the same word. To further rule out the false matches,

longest common sequence search is performed on the matching fea-

ture pairs [16]. Lastly, a horizontal line projection model is estimated

from the locations of the matching feature pairs. The matching GV

score is given as c1 × c2, where c1 and c2 is the percentage of fea-

tures that have matched up between the two images. This score is

used to rerank the final list.

4. EXPERIMENTAL RESULTS

This section shows experimental results on large-scale word patch

matching using a database of 960K word images. These word im-

ages are generated synthetically with Arial font using a combined

dictionary from Tesseract 1 and SCOWL 2 with a total of 400K

words. We generate lower case (except for names), upper case, and

sentence case versions of each word to obtain the set of 960K im-

ages. The adoption of the Tesseract dictionary is for the purpose

of comparison. From the dictionary, we randomly select 500 words

and print them on paper and take pictures of the words using camera-

phones to generate query word patches. In total, we generate 1000

training word patches and 1000 testing word patches. Sample word

patches are shown in Fig. 5. To obtain the tight boxes in the query

word patches, we perform adaptive binarization [27] on the image

and fit a rectangular box to the connected components.

We evaluate the performance of the word patch matching by

looking at the retrieval performance of searching the same word from

the large database of word patches given a query word patch. We

calculate the recall at different ranks of the retrieved list and the pre-

cision of the top match in the retrieved list.

Fig. 5: Example query word patches.

4.1. Training

We train the Word-HOG descriptor and the word patch matching

pipeline using the 1000 training query word patches and a subset

of the database image with 120K images. Optimizing for accuracy

and speed, we find the best parameters for the Word-HOG descriptor

as follows: the expanded box margin m = 0.95, the resized patch

height before Word-HOG extraction H = 32, the pre-blurring Gaus-

sian filter has σ = 3, and the sub-block width is 1/2n with n = 1.

The best parameter for the VT tree depth D = 4 while the distance

threshold for GV θ = 0.6. These settings are used for the remaining

experiments.

4.2. Large-scale Word Patch Matching

Fig. 6 shows the retrieval performance at two stages within the word

patch matching pipeline. The VT uses only image descriptors hence

reorders similarity based on appearance. Thus, after VT matching,

the accuracy at the top is fairly low. In the GV step, we rerank

the 1000 top scoring entries. With GV, we enforce the order of

the matching features and improve the performance. Overall, we

achieve a recall of 0.84 for the top match. The average overall re-

trieval process time is a couple hundred milliseconds on a server

using a single core of a 2.4GHz Xeon processor.

1Tesseract Open Source OCR, http://code.google.com/p/tesseract-ocr/
2Spell Checker Oriented Word List, http://wordlist.sourceforge.net/
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Fig. 6: Retrieval performance at two stages in the pipeline.

4.3. Retrieval Performance Comparisons

We compare the proposed pipeline with the following additional

methods. (1) FAST+SIFT: we extract SIFT descriptors from FAST

interest points in the image and use the VT retrieval pipeline with

GV. This is based on [16]. (2) DOG+SIFT: we extract SIFT from

DoG interest points and use the pipeline in [26] for matching. (3)

OCR: Tesseract OCR is used to recognized the word patch. (4)

OCR+Dictionary: Words from a dictionary that only contains the

words in the database are retrieved using the recognized characters

from OCR and ranked based on editing distance.

Fig. 7 shows the retrieval performance of the described meth-

ods with database sizes ranging from 7.5K to 960K. The figure

also shows the recognition accuracy of Tesseract, which is ∼ 0.76.

FAST+SIFT performs as well as Tesseract for small databases, but

not as well when the database is large. DOG+SIFT performs better

than FAST+SIFT, but the trend is similar. Our approach is better

than DOG+SIFT and FAST+SIFT and close to the approach of

using OCR+Dictionary, which performs the best.

For the three methods that use the VT for matching words, we

look at the number of features used in the VT matching. The average

number of query image features used is 88, 60, 33 for FAST+SIFT,

DOG+SIFT, Word-HOG, respectively. With just half of what

FAST+SIFT or DOG+SIFT is using, Word-HOG can perform

much better in retrieval.

4.4. Matching with Lossy Compression

We further want to investigate how the query data size affects the fi-

nal word matching or recognition performance. We set up three sys-

tems that use different query data to perform word matching for com-

parison: (1) Compressed Word-HOG: We use compressed Word-

HOG as query data with different quantization parameters that re-

sults in different sizes. (2) Compresed WSIFT: We use compressed

WSIFT as query data. The WSIFT is extracted from the Word-HOG

and compressed using lattice coding. The same retrieval pipeline

is used for (1) and (2). (3) JPEG: We use JPEG compressed word

patch as query data. For recognition, we use Tesseract to recognize

the text. Then, the recognized text is used to retrieve words from a

dictionary containing only the words in the database.

The matching performances retrieving from a database of 120K

patches of the three methods are show in Fig. 8. We see Compressed
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Fig. 7: Comparison of various word patch matching methods.

Word-HOG performs well at low bit rates. At a query size of 50

bytes, the recognition accuracy is 0.87. The Compressed WSIFT
query size is generally > 7 times larger than the Compressed Word-
HOG query size. JPEG performs the worst when the query size is

small. For reference, OCR+Dictionary shows the retrieval result of

using the recognized word from the original word patch with dictio-

nary lookup.
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Fig. 8: Retrieval performance vs. query data size.

5. CONCLUSIONS

We have developed a new word patch descriptor for mobile visual

search, called Word-HOG, or Word Histogram of Oriented Gradi-

ents. The descriptor is gradient orientation histogram-based which

we compress efficiently using lattice coding with a context-based

arithmetic coder. The descriptor is used for word patch matching

with vocabulary tree and geometric verification. The matching

pipeline has a retrieval performance that is much better than state-

of-the-art algorithms for general visual features and is roughly on

par with OCR followed by dictionary lookup. However, computing

Word-HOGs is much faster than performing Tesseract OCR, an

important advantage for mobile implementations. The newly devel-

oped descriptor is highly compressible, at a query size of just tens of

bytes, there is only a negligible drop in matching performance.
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