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The Hidden Sides of Names -
Face Modeling with First Name Attributes
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Abstract—This paper introduces the new idea of describing people using first names. We show that describing people in terms
of similarity to a vector of possible first names is a powerful representation of facial appearance that can be used for a number
of important applications, such as naming never-seen faces and building facial attribute classifiers. We build models for 100
common first names used in the United States and for each pair, construct a pairwise first-name classifier. These classifiers are
built using training images downloaded from the internet, with no additional user interaction. This gives our approach important
advantages in building practical systems that do not require additional human intervention for data labeling. The classification
scores from each pairwise name classifier can be used as a set of facial attributes to describe facial appearance. We show
several surprising results. Our name attributes predict the correct first names of test faces at rates far greater than chance.
The name attributes are applied to gender recognition and to age classification, outperforming state-of-the-art methods with
all training images automatically gathered from the internet. We also demonstrate the powerful use of our name attributes for
associating faces in images with names from caption, and the important application of unconstrained face verification.

Index Terms—Facial processing, attributes learning, social contexts, multi-feature fusion.
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1 INTRODUCTION

E XPECTANT parents usually spend a great deal of
time fulfilling their first official act - naming their

baby. To the parents, choosing a name for the child
may appear to be a choice from a near-infinite pool
of possibilities. However, social context influences
this decision, from the obvious factors (e.g., gender
and ethnicity), to the less obvious ones (e.g., socio-
economic background, popularity of names, names
of relatives and friends). Consequently, first names
are not distributed at random among the people in
a society. As shown in Figure 1, a typical Alejandra
appears to have a darker complexion and hair than a
typical Heather, while Ethan mostly appears as a little
boy since it is a recently popular male name. Taking
these examples further, specific first names vary in
prevalence even within a race. For example, though
both of the following names are primarily Caucasian,
the name “Anthony” has an Italian origin, and the
name “Sean” has an Irish origin. We might expect
different distributions of and correlations between
facial shapes, complexions, and facial hair within even
these two (primarily) Caucasian male first names. In
a sense, each first name represents a joint distribution
over a large set of facial attributes. In this work, we
represent the appearance of many first names, and
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show that this name-based representation of facial
appearance is a powerful face attribute.

This paper introduces, and then begins to answer,
a new question in facial processing: Can we infer the
name of a person from only a single photograph,
and with no other image examples of that face?
Of course, it is unrealistic to expect highly accurate
performance at this task. After all, guessing the correct
name for a never-seen face is an extremely challenging
task. Nevertheless, such a system, even if imperfect,
could have a broad range of applications in security
(e.g., finding fake person identities from database)
and biometrics (e.g., inferring the gender, age and
ethnicity by guessing likely names of a face). In this
work, we represent faces using first-name attributes
and show superior performance of this modeling in
various important applications, including gender and
age classification, face verification, and associating
faces with names. One compelling advantage of our
approach is that the name models can be learned
using the already name-tagged images from social
media such as Flickr. Consequently, facial processing
applications do not require additional human labeling
to train first name attributes.

Our contributions are the following: First, we
present the first treatment of first names as a facial
attribute. Our model includes a novel matched face
pyramid and Multi-Feature SVM representation, and
has the advantage that all necessary training images
and labels are mined from the internet. Second, our
work is the first attempt of modeling the relation
between first names and faces from a computer vision
perspective, and we show that our constructed name
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Alejandra 

Heather 

Ethan 
Fig. 1: Face examples of 2 female and 1 male names and their average faces
computed from 280 aligned faces. Comparing the average faces, Alejandra
(often Hispanic) has darker skin and hair than the average face of Heather
(often Caucasian). In contrast, Ethan (a popular boy’s name in recent years)
has a much younger looking.

models are surprisingly accurate: guessing the correct
first name at a rate greater than 4× the expected
random assignment (and greater than 2× if gender
is assumed to be known) from a pool of 100 choices.
Third, we extend the recent work in [1], showing how
our first-name attributes can be utilized on a series
of important facial processing applications, such as
face verification and assigning name tags to faces,
often achieving state-of-the-art performance without
the need for manually labeled training images. For
the benefits of research community, we have released
the dataset1, the face pyramid feature extraction code,
name prediction code, extracted facial features and
trained first name models2.

2 RELATED WORK

This paper builds on recent ideas in the areas of com-
puter vision (for learning mid-level features to repre-
sent object visual appearance) and social psychology
(for investigating the social impact of first names).
People’s first names contain rich social contextual
information, which has been extensively studied in so-
cial psychology but not explored in computer vision.
In this section, we will first review the literatures that
use mid-level attributes for representing images, with
special discussions on those works that specifically

1. Names 100 Dataset available at: http://purl.stanford.edu/
tp945cq9122

2. Code, extracted features and trained models available at: http:
//purl.stanford.edu/fb872mg3286

use attributes to describe facial appearance. Then we
present some social psychology studies that demon-
strate the social contexts of names.

In computer vision, face detection and recognition
achievements now date back around four decades
[2]. Extensive studies have been made on numerically
representing faces as features, from the earlier work
of Eigenfaces [3], Fisherfaces [4] and Independent
Component Analysis [5], to more recent develop-
ments of Local Binary Pattern [6], biologically in-
spired features [7], and sparse coding of low-level
features [8]. Over the past few years, a thrust in com-
puter vision concerns the representation of objects us-
ing meaningful intermediate features, i.e., attributes.
Farhadi et. al. [9] learn discriminative attributes for
objects and subsequently perform object categoriza-
tion using the attributes representation. Torresani et.
al. [10] also investigate the use of attributes for ob-
ject categorization, but their attributes are emerged
from the intersection of categorical properties and
do not necessarily have semantic meanings. In [11]
and [12], images are described by the outputs of a
large number of object detectors (object bank) such as
“person”, “water”, and “mountain” detectors. Using
these object detector responses as attribute features, a
simple SVM classifier is capable of achieving state-of-
the-art performance on scene classification. Building
from the work showing that attributes provide good
descriptions of objects and scenes, several papers have
shown advantages in describing facial appearance in
terms of a large number of attributes [13], [14], [15]
such as “male”, “middle-aged”, “asian”. Describing
people by semantic facial attributes is an intuitive
and powerful technique, but in order to train a set
of models for recognizing facial attributes, a large
training set must be manually labeled for each at-
tribute at high cost. Further, because the attributes are
learned independently, the relationships and correla-
tions between the attributes must also be modeled to
improve performance. In this work, first names are
treated as attributes of faces, and the representation
implicitly jointly models age, gender, race, and other
(possibly unnamed) appearance attributes associated
with the people having that first name (Figure 1).
Our work has a flavor similar to [16], where Berg
and Belhumeur applied pairwise person classifiers
to the task of face verification. Nevertheless, each of
their person classifiers was trained using faces of two
specific individual persons, which drastically differs
from our approach that trains models on face images
sampled from first names.

In [17], names from captions are matched to the
faces in the image based on 2 attributes: gender and
age (derived from facial analysis from images, and
from records of name popularity over time). However,
we have found that people’s first names imply more
information beyond gender and age. In this paper, we
extend attributes far beyond the simple modeling of
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faces using gender and age attributes, to an appear-
ance model of what distinguishes first names from
one another.

At a first glance, it might seem odd to expect that
learning appearance models for different first names
would be a fruitful strategy for facial appearance
modeling. However, social psychology shows two
important results regarding names. First, it shows that
names matter and affect the lives of the people to
whom they are assigned [18], [19], [20], [21], [22],
[23]. Second, people themselves employ stereotypical
models for names that even affect their perception of
attractiveness and appearance [24], [25]. Building on
the findings of these studies, in this work, we also
demonstrate the power of first name attributes via a
series of facial analysis experiments.

As shown in [20], juvenile delinquents do not have
the same name distribution as the general population,
even after controlling for race. Unpopular names, also
correlated with a lack of education, are more common
in the delinquent population. Further, [18] shows
that first names associated with lower socio-economic
status (e.g., names with an apostrophe, with a high
“Scrabble score”, or having other attributes) result in
both lower standardized test scores and lower teacher
expectations, even after using sibling pairs to control
for race and socio-economic status.

The name a person receives at birth also affects that
person’s preferences and behaviors. Letters belonging
to the first or last name are preferred above other
letters [21]. This preference appears to transcend the
laboratory and influence major life decisions. In a
series of papers, Pelham, Jones, and collaborators
call the effect implicit egotism, the gravitation towards
people, places and things that resemble the self. Peo-
ple disproportionately choose spouses with names
similar to their own [19]. For example, Eric marries
Erica at a greater than the expected rate. People have
careers and states of residence that are similar in
sound to their names at disproportionate rates [22].
For example, Dennis is more likely to be a dentist than
expected by chance, and more people with surnames
beginning with Cali- live in California than expected
by chance. This line of investigation is extended to
towns of residence and street names in [23].

People have stereotypical ideas about names, and
the appearance of people with those names. In one
study [24], girls’ photographs were rated for attrac-
tiveness. Those photos assigned desirable names (at
the time, Kathy, Christine, or Jennifer) were rated
as more attractive than those assigned less desirable
names (Ethel, Harriet, or Gertrude) even though the
photographs were ranked as equally attractive when
no names were assigned. In another relevant study
[25], subjects first used facial manipulation software
to produce stereotypical face images for 15 common
male names (e.g. Andy, Bob, Jason, Tim) by varying
facial features. Additional subjects are able to identify

the prototype names for each face at rates far above
random guesses (10.4% vs. 6.7% ) and for 4 of the 15
faces, the majority vote name was correct. This strong
evidence provides motivation for us to learn, from
actual images, visual models for first names.

3 NAMES 100 DATASET

To model the relation between names and appearance,
we assembled a large dataset by sampling images
and tags from Flickr. The dataset contains 100 pop-
ular first names based on the statistics from the US
Social Security Administration (SSA) [26], with 800
faces tagged for each name. The 100 names were
selected as follows: First, we ranked the names from
the SSA database in order of the total number of
times each name was used between 1940 and the
present. Then, the top names for males and females
were found. In turn, first names were used as a Flickr
query, and names for which enough (≥ 800) image
examples were found were kept in the dataset. The
completed dataset includes 48 male names, 48 female
names, and 4 neutral (a name held by both males and
females) names to model the real-world distribution
of names. In Figure 11, we plot the average face
of each name by taking the mean of its 800 facial
images. Our Names 100 dataset covers 20.35% of
U.S. persons born between 1940 and 2010. We use
the name as a keyword to query Flickr and enforce
the following criteria when sampling images, in an
effort to sample first-name appearance space as fairly
as possible: First, since name ambiguities arise when
multiple people are present in an image, we run a
face detector [27] and eliminate those images that
contain multiple faces, and check if there exists one
and only one first name in the image tag. Second,
we filter out images that are tagged with any of 4717
celebrity names that could bias the sampling. Without
this consideration, a query of “Brad” would return
many images of the movie star “Brad Pitt”, and distort
the facial appearance distribution of the name “Brad”.
Last, no more than one image is downloaded per
Flickr user. This rule is meant to prevent multiple
instances of a person “David”, when “David” appears
in many images of a particular Flickr user. While these
rules may not be sufficient to prevent all instances
of either incorrectly named faces, or different images
of the same person appearing more than once, they
are effective at preventing many problems that more
naı̈ve strategies would encounter, and we found them
to be effective. Inevitably, almost all datasets have
biases, and we acknowledge several biases of this
dataset. Firstly, we are limited to only the pictures
taken by Flickr users so this could eliminate a large
demography. Also, as we run a face detector on the
images, the detected faces are mostly facing towards
the camera so there are no faces from a side view.
Lastly, the tags on Flickr could be noisy, for example,
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an image of “David’s Mom” may mislead us to use
“David” as the name label for this image. To study
the noisy of our dataset, we sampled a subset of
10,000 images from our dataset and manually checked
whether the face image agrees with the name tag,
where we found 5.86% of the 10,000 images contain
name tags that may not agree with the facial appear-
ance. The sources of errors include false detected face,
gender-name disagreement, drawings, and artistically
manipulated faces. Assuming the dataset were clean
where all faces are labeled with their actual first
names, the performance of our first name attributes
would be further improved as our models could be
trained using clean data.

4 DESCRIBING FACES WITH FIRST NAME
ATTRIBUTES

Figure 2 shows an overview of the our system.
First, the faces are normalized for scale with de-
tected eye positions [28] and resampling the face to
150 × 120 pixels. We extract SIFT descriptors [29]
by sampling on a dense grid with 2-pixel inter-
vals. Each 128-dimensional SIFT descriptor is then
encoded by the Locality-constrained Linear Coding
(LLC) method [30] to a 1024-dimensional code. These
encoded LLC codes are aggregated over a spatial
pyramid [31] using max pooling, such that we have
a 1024-dimensional vector at each of the 21 pyramid
grid. This produces a feature vector of 21 × 1024 =
21504 dimensions for each face.

For each pair of first names, we then build a
Support Vector Machine (SVM) [32] classifier to dis-
criminate between that pair of names (more details
on classifier construction are in Section 5). There-
fore, classifying N names requires N×(N−1)

2 pairwise
classifiers. This 1-vs-1 classifier construction [33] is
common for multi-class problems, and particularly
relevant for distinguishing between first names. The
visual features that distinguish any particular pair of
individuals varies. For example, “David” and “Mary”
differ in gender, but “David” and “Ethan” differ
mainly in age (“Ethan” is a younger name). We also
experimented with using a 1-vs-all approach for clas-
sifier training, and found the results to be inferior
to the 1-vs-1 classifiers. Using these pairwise name
classifiers, a test face can then be described by a vector
of N×(N−1)

2 dimensions, each being an SVM output
score indicating whether the name of the face is more
likely to be the first or the second in the name pair.
We call this feature vector the pairwise name attribute
representation of the face. In our case of 100 names,
the pairwise name attributes is a 4950 dimensional
feature vector.

The pairwise name attributes establish the link be-
tween a face and the names that best fit its appear-
ance, which naturally leads to many interesting appli-
cations as we describe in Section 6. We show that our

system accomplishes the obvious task, guessing the
first name of a person, at rates far superior to random
chance, even after accounting for the effects of age
and gender. We then describe an application of gender
classification based on our pairwise name attributes,
which achieves state-of-the art performance. Further,
we demonstrate that the pairwise name attributes are
very effective on the task of age classification.

It is important to point out that our entire system,
with the exception of training for face verification
(see Sec. 6.6), requires no human labeling beyond
the existing Flickr name tags. This gives our system
several unique advantages. First, it is inexpensive to
deploy. By not requiring any additional human labels,
we do not need to pay human workers and we avoid
costs associated with training workers. The labels that
we do use (first names tagging the images) are freely
provided on the Internet because they already provide
value for searching and sharing the images. Second,
because our system is driven by first names as at-
tributes, we avoid semantic issues related to attribute
tagging (e.g. ideas about what constitutes “attractive”
vary between observers). Finally, our system is easily
extensible. Although, for now, we explore the popular
first names from the United States, extending the
system to other cultures is as easy as performing
additional image downloads with additional name
queries as search terms.

5 PAIRWISE NAME CLASSIFICATION USING
MULTI-FEATURE SVM
As mentioned in the previous section, we compute
a 21 × 1024 = 21504 dimensional feature vector for
each face. Conventionally, as has been done in [30],
this extremely high dimensional vector is directly fed
to an SVM for classification. However, performing
classification in such a high dimensional feature space
is susceptible to overfitting, especially on our chal-
lenging classification task of assigning first names to
faces. Therefore, instead of simply concatenating the
1024 dimensional LLC codes from all 21 pyramid bins,
we regard a face as represented by 21 feature vectors,
each vector coming from one pyramid bin. In this way,
the 21 feature vectors can be viewed as coming from
21 feature channels that are complementary to each
other, and we propose a method called Multi-Feature
SVM (MFSVM) that effectively fuses the features to-
gether to achieve a better performance on the task of
first name classification.

Our MFSVM follows the framework of AdaBoost
[34], with the classifiers being SVMs working on
different feature channels. To begin, we initialize equal
weights on all training images and use feature channel
1 to perform a 5-fold cross validation using SVM. The
misclassified training images with that SVM are given
higher weights when training the SVM for feature
channel 2. Intuitively, the SVM for feature channel 2
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Aligned Face 

• Name guessing 
• Gender recognition 
• Age classification 
• Face-name assignment 
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Fig. 2: Overview of our system. First, a query face is represented as a 3-level pyramid of max-pooled LLC codes, with 1 pyramid grid at the top level, 4
at the next, and 16 at the bottom level. Next, the face is classified in a 1-vs-1 fashion with a set of pairwise name classifiers. The pairwise name classifiers
output confidence scores which we call pairwise name attribute vector, which can be used for many applications as we will show Section 6.

will focus on the highly weighted mis-classified im-
ages from feature 1’s SVM. This procedure is repeated
until we have trained an SVM on each of the feature
channels.

More formally, suppose there are T feature channels
and N training images, we denote the training data
as xt,i, where t = 1, ..., T and i = 1, ..., N , meaning
the t-th feature extracted from the i-th training image.
Each training image is associated with a training label
yi ∈ {−1,+1}. For a test image, the testing data is zt.
The MFSVM is shown in Algorithm 1.

Data: Training data xt,i, training labels yi ∈ {−1,+1},
testing data zt, where t = 1, ..., T and i = 1, ..., N

Result: SVM classifiers ft(zt), classifier weights αt

Initialization: weights Di = 1;
for t = 1 : T do

(a) Using weights D, perform SVM cross
validation to obtain confidence fcv

t (xt,i) ∈ R and
prediction ŷcvt,i = sign(fcv

t (xt,i)), compute error

errt =
∑N

t=1 I{ŷcv
t,i 6=yi}

N
;

(b) Train SVM ft using D;
(c) Compute αt =

1
2
log( 1−errt

errt
);

(d) Set Di = Di exp(−αtyif
cv
t (xt,i)), and

renormalize so that
∑N

t=1Di = N ;
end
Output the final classifier fall(z) =

∑N
t=1 αtft(zt)

Algorithm 1: Multi-Feature SVM

In practice, we fuse the 21 features channels from
coarse to fine grids on the face image pyramid. In
our experiments we find that the ordering does not
have much effect on the performance. On average,
the pairwise name classifiers perform quite well at
distinguishing between first names as shown in Table
1. As expected, it is easier to classify between names
that differ in gender. We also found, within each
gender, the pairs of names that are easiest and hardest
to distinguish, see Table 1. Easy-to-distinguish name
pairs tend to have different ages (Figure 3). Name
pairs that are hard to distinguish tend to have similar
popularity patterns.

6 APPLICATIONS OF NAME MODELS

In this Section, we explore the performance of our
pairwise name representation for a variety of tasks.
We first show that the name models are surprisingly
accurate on the task of first name prediction, then
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(b) Stephanie vs. Christina
Fig. 3: Probability of birth year for an easy to distinguish female pair (a) Sue
vs. Natalia: accuracy of 76.3%, and a difficult to distinguish pair (b) Stephanie
vs. Christina: accuracy of 46.1%.

TABLE 1: A summary of the performance of the pairwise name classifiers.
The top four rows summarize the overall performance at distinguishing
between two names. The bottom four rows show the most and least accurate
pairwise name classifiers when classifying between two mostly male or
two mostly female names. Mike vs. Brian and Stephanie vs. Christina are
indistinguishable to our classifier (which performs at the level of random
chance) because the gender, age, and ethnic makeup of the samples with
those name pairs are so similar. For all rows, random chance results in a
50% accuracy.

Accuracy STD
Overall 69.4% 11.1%
Male-Female 79.5% 4.0%
Male-Male 59.5% 6.4%
Female-Female 59.1% 5.0%
Best Male: Noah vs. Steve 79.3%
Best Female: Sue vs. Natalia 76.3%
Worst Male: Mike vs. Brian 45.9%
Worst Female: Stephanie vs. Christina 46.1%

propose novel applications that utilize name attributes
for gender recognition, age classification, face-name
assignment and face verification.

6.1 First Name Prediction
First name predictions are derived from the pairwise
name attributes as follows: Each first name is as-
sociated with N − 1 pairwise name classifiers. The
total name margin for a particular name is produced
by marginalizing over each associated pairwise name
classifier. By sorting the first names according to the
total name margins, a rank-ordered list of first names
is produced.

We evaluate the performance of first name pre-
dictions on our Names 100 dataset by 5-fold
cross validation. The dataset contains 100 names ×
800 faces/name = 80, 000 faces. In each fold we test
on 16, 000 faces with equal number of testing exam-
ples per name, while varying the number of training
examples to study the effect of training data size on
the name prediction performance.
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Fig. 4: The top-3 predicted names for some face images. The correct prediction is highlighted in green, while the actual first name is shown in red if it is
not ranked within the top-3 predictions. The first 2 rows give some good examples where our top-3 predictions include the actual name, and the bottom 2
rows are randomly selected from our test set. Even when our predictions are wrong, reasonable names are predicted (e.g., appropriate gender or age).

6.1.1 Low-level features
We are first interested in comparing the low-level
feature of our choice, LLC coded SIFT feature [30],
with Local Binary Patterns (LBP) [6] and Histogram
of Orientated Gradients (HOG) [35] since these two
features are very popular in the face recognition
community. The details for extracting LLC feature
were described in section 4. For LBP, we divide the
face into blocks of 10 × 10 pixels and extract 59-
dimensional LBP code from each block. For HOG, a
36-dimensional histogram is extracted from each cell,
using the default cell size of 8×8 pixels. We compare
the performance of these three features in Figure 5,
by plotting the learning curves of top-1 prediction
accuracy and Mean Average Precision (MAP). It can
be seen that the LLC feature outperforms LBP and
HOG by a large margin, thus the LLC feature is
chosen as our low-level feature.

6.1.2 MFSVM Evaluation
We compare our proposed MFSVM method to the
method in [30] where the LLC feature is directly
used by a single SVM. The learning curves of top-1
prediction accuracy, Mean Average Precision (MAP)
are shown in Figure 6. We also include the plot of
Recall vs. Number of name guesses by performing
the 5-fold cross validation over the 80,000 faces in
our dataset. As can be seen in Figure 6, our MFSVM
classifiers fuse the 21 max-pooled LLC codes from
the face pyramid and offer a significant performance
gain over the original LLC method in [30]. With 640
training images per name, we achieve 4.17% top-1
prediction accuracy and 0.117 MAP, which is far better
than the random guess performance of 1.00% accu-
racy and 0.052 MAP. Table 2 shows the performance
of our model for guessing first names as a function of
the number of names. Some examples of first name
predictions are shown in Figure 4.

TABLE 2: Performance of our approach for guessing first names given
randomly selected subsets of N names.

Number Names N 5 10 40 70 100
Random Guess 20.0% 10.0% 2.50% 1.43% 1.00%
Our approach 39.4% 23.5% 8.19% 5.41% 4.17%
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(b) MAP
Fig. 5: Evaluation of different facial features on the Names 100 dataset. The
task is to predict the first name of a previously unseen face from 100 choices.
The LLC feature significantly outperforms LBP and HOG, thus the LLC
feature is chosen as our low-level feature.
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(c) Recall vs. # of guesses
Fig. 6: Evaluation of first name prediction on the Names 100 dataset. The
task is to predict the first name of a previously unseen face from 100 choices.
The results of both the MFSVM classifier and the LLC method are far
better than random guess (MFSVM accuracy 4.17% vs. random accuracy
1%, MFSVM MAP 0.117 vs. random MAP 0.052), with MFSVM showing
improved performance over the LLC method. (c) illustrates the recall of
correct name as the number of guesses changes.

6.1.3 Effects of Gender and Age on Name Prediction

How is it possible that names can be guessed more
than 4× better than random? It is because names are
not randomly distributed across people, and many
correlations exist between given names and various
facial features (e.g., skin color, male-ness, facial feature
size, age, and possibly even nameless attributes [36]).

To more thoroughly investigate the relationship
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between names and faces, we examine a baseline
of estimating gender and age for the task of name
prediction. In other words, how accurately can we
guess a first name, given only the estimated age and
gender of the face? We train gender and age classi-
fiers using the Group Image Dataset [37], a dataset
which contains a total of 5,080 images with 28,231
faces manually labeled with ground truth gender and
coarse age categories (age categories include 0-2, 3-7,
8-12, 13-19, 20-36, 37-65, 66+). We construct the gender
and age classifiers in the exact same manner as we
train the name models, by first extracting max-pooled
LLC codes on the face pyramid, then passing the fea-
tures to MFSVM classifiers and finally marginalizing
the outputs from the classifiers. Having trained the
gender and age classifiers, we use them to predict the
gender and age of the faces in our Names 100 dataset.
The gender and age predictions associated with a
testing face are not independent of first name, hence
considering these features offer a better performance
than random guess. First names are predicted from
gender and age estimates as follows: Considering
estimated gender, if a test face is classified as a male,
then we make a random guess among the male names.
Considering estimated age category, we compute the
range of predicted birth years by subtracting the
predicted age from the image taken year. Since each
name has a birth year probability distribution over
time (see Figure 7), the first name is predicted as
the name that has the maximum birth probability
within the range of predicted birth years. We can also
combine gender and age, by incorporating the esti-
mated age information to make first name guess only
within the subset of names selected by the estimated
gender. Table 3 compares our name models trained
using 640 images/name to the baseline performances
achieved by considering estimated age and gender as
described above. Our name models achieve superior
performance (4.17%), even versus the baseline that
combines both gender and age classifiers (2.33%). This
observation shows the advantage of our approach
that directly constructs appearance models for first
names, rather than introducing an intermediate layer
of variables (e.g., gender and age) to learn the relation
between names and their facial appearances. In other
words, our name models capture visual cues beyond
just age and gender.

TABLE 3: Comparison of our approach to the methods of including gender
and age effects on first name prediction. By directly modeling names and
faces, we achieve much better performance even when gender and age effects
are taken into account.

Method Prediction accuracy MAP
Our approach 4.17% 0.117
Gender → name 1.61% 0.075
Age → name 1.37% 0.063
Gender + age → name 2.33% 0.089
Random guess 1.00% 0.052

6.1.4 Human Evaluation
We additionally evaluated the human performance on
guessing first names via Amazon Mechanical Turk.
The test samples include 2000 male and female face
images from our Names 100 dataset, and we have 3
workers work on each image. As it is unrealistic to
ask human to select 1 name out of the 100 names, we
show a face with 10 possible names, where the names
include the correct name and 9 other random names
of the same gender in random order. The human
prediction accuracy is 13.7% with ±0.87% margin of
error for a 95% confidence interval (compared to the
random baseline of 10%), compared to our method
that achieves 18.2% accuracy within the 10 selected
names, with margin of error being 1.4% at 95% con-
fidence interval.

6.2 Gender Recognition From Names
Using our first name attributes, we are able to con-
struct a state-of-the-art gender classifier by exploiting
the fact that many first names have a strong associ-
ation with gender. Intuitively, if a face seems more
like an “Anthony” than an “Anna” then it is more
likely to be the face of a male. Our gender classifier
works as follows: First, we produce the pairwise name
attribute vector for each test face. Next, we order the
first names by their total name margins as described
in Section 6.1. Finally, we classify the gender of the
test face as male or female depending on the gender
associated with the majority of top 5 names in the
ordered list of 100 first names. A neutral name is
counted as either a male or a female name based on
the gender ratio of that name, which is computed with
SSA database [26] statistics.

We evaluate the gender recognition performance
on the Group Image Dataset [37], which contains
faces with a large variation of pose, illumination and
expression. We benchmark our gender-from-names
algorithm against Kumar’s method of [15], using
the “gender” attribute predicted from their system.
Kumar’s facial attributes system runs their own face
detector, which correctly detected 22,778 out of 28,231
faces from the Group Image Dataset, and we filtered
out their falsely detected faces with the ground truth
face positions. We compare the gender classification
algorithms on these 22,778 test faces. As reported in
Table 4, our method outperforms the result of [15],
and achieves a gender classification accuracy of 90.4%,
which is an impressive 29% reduction in error. It is
important to again note that our gender classifier uses
name models trained with names freely available on
the web, and does not require any manually labeled
gender training examples. As another comparison, we
use the MFSVM approach to train gender classifier
on images from [37] with human annotated gender
labels. This strongly supervised classification scheme
achieves 89.7% accuracy from 2-fold cross validation,
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Fig. 7: The birth year probabilities of a set of names, where many names
show varying popularity over the years.

still below our 90.4%, and again, our method has the
benefit of not requiring manual labels.

TABLE 4: Without any gender training labels, we perform gender recognition
using our name models and achieve state-of-the-art performance.

Algorithm Gender recognition accuracy
Gender-from-names 90.4%
Kumar et. al. [15] 86.4%
Prior 52.4%

6.3 Age Classification From Names

Due to the evolution of culture and occurrence of
significant events, the popularity of a name varies
over time. We use the statistics from the SSA database
to plot the birth year probabilities of several names
in Figure 7, where it can be seen that the birth
probabilities of names have large fluctuations over the
years. If a person is named Zoe, she is likely to be
young because the name Zoe became popular during
the 1990s. Thus, once we are able to describe a test
face with our first name models, then we can utilize
the birth probability of names to predict the age of
the face. The advantage of such an age-from-names
approach is obvious: as with our gender classifier, we
again do not require any age ground truth labels to
produce a reasonable age classification.

Our age-from-names classification works by first
generating a ranked list of 100 names for a test face
(again following Section 6.1), using the 4950 pairwise
name models trained for first name prediction. We
also compute the birth year probabilities from 1921
to 2010 for these 100 names, using the SSA baby
name database. Certainly, the names ranked at the
top of the list should be given higher weights for
the task of age classification. Therefore we assign
exponentially distributed weights to the ranked 100
names, such that the i-th name is associated with a
weight of ωi = λe−λi, where λ = 10. Denoting the
birth probability of the i-th ranked name in year j
as pi(j), then the birth probability of the ranked 100
names are combined using weighted product:

pcombined(j) =

∏100
i=1 pi(j)

ωi

Z
(1)

where Z =
∑
j pcombined(j) is a normalization term.

Each test image contains a time stamp in its JPEG
metadata, so we know the year that the image was

taken. Suppose that the test image was taken in the
year 2008 and we believe the face falls into the age
category of 20-36, then the person should be born
within the year range of 1972 to 1988. We assign the
confidence score for the face belonging to the age
category of 20-36 as the mean of the combined birth
probability over the proportion of the years 1972 to
1988. The confidence score can be written as:

Confidence of age t1 to t2 =

∑s−t1
j=s−t2 pcombined(j)

t2 − t1 + 1
(2)

where s is year that the image was taken, t1 and t2
specify the lower and the upper bound of the age
category respectively.

Once again, we evaluate our age classification per-
formance on the Group Image Dataset. Equation (2)
is employed to compute the confidence scores for the
7 age categories of 0-2, 3-7, 8-12, 13-19, 20-36, 37-
65, 66+, as specified in the dataset. The age category
with the largest confidence score will be picked as
the age prediction for the test face. We work on the
same test partition that was used in [37], where there
are an equal number of testing instances for each age
category (1050 images total). Table 5 reports the accu-
racy for exact category match, as well as the accuracy
when an error of one age category is allowed (e.g.,
a 3-7 year old classified as 8-12). We benchmark our
age-from-names classifier against the performance of
[37], where our system shows a significant improve-
ment. When allowing an error of one age category,
our age classifier achieves 88.0% accuracy, which is
surprisingly good given the fact that we are simply
utilizing the age information hidden inside the names
and use no other manually labeled information. While
we are pleased with this performance, we do not claim
to have state-of-the-art accuracy for age estimation
[38], which currently relies on manifold learning and
regressing using training images for which the actual
age of each face is known. We do claim to have the
most accurate (and only) age estimation method for
which no age labels are provided for the training
images.

TABLE 5: We perform age classification using the birth probability of names
over years 1921-2010. Without any age training labels, our age classification
result shows significantly improved result compared to [37].

Algorithm Accuracy for
exact match

Allow error of
one age category

Age-from-names 41.4% 88.0%
Gallagher & Chen [37] 38.3% 71.3%
Random Prior 14.3% 38.8%

6.4 Cross-ethnicity Experiments

Our name attributes are built on 100 popular first
names in the United States. It is interesting to see
whether these first name attribute models generalize
well to faces from across other cultures and ethnici-
ties. To investigate this, we apply our trained name
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attributes models to Asian faces to study this cross-
ethnicity problem. Our goal is to perform gender and
age recognition on Asian faces without any re-training
of the name models.

For evaluation purposes, we need a dataset that
contains Asian faces with labeled gender and age
information. While there are a number of face datasets
that contain Asian faces, most of them cannot be
used for our task because of the limited number of
human subjects, or having little variation on gender
or age. We chose the FaceTracer Database [13] to
perform the cross-ethnicity experiments, as it contains
Asian faces across different gender and age groups
taken in unconstrained settings. In the FaceTracer
Database, 200 faces were labeled “Asian”, but we
can only collect 150 of these faces due to invalid
image links. Following the dataset labeling procedure
used in Gallagher’s Group Image Dataset [37], we
manually annotated the gender and categorical age
labels (7 age categories) for each of these Asian faces.
Our gender-from-names and age-from-names classi-
fiers are then tested on the 150 labeled faces. The
gender and age classification accuracies are tabulated
in Table 6. Compared to the gender and age classifier
performance on the Group Image Dataset (mostly
Caucasian faces) in Table 4 and Table 5, we do not
observe major degradation of performance by testing
on Asian faces. This is encouraging and suggests that
our first name attributes generalize well in the cross-
ethnicity settings.

TABLE 6: Accuracies of gender-from-names and age-from-names classifiers.

Algorithm Accuracy for
exact match

Allow error of
one age category

Gender-from-names 86.0% NA
Age-from-names 43.3% 90.7%

6.5 Beyond Names 100
As indicated in Section 3, the 100 names used in our
Names 100 dataset covers 20.35% of U.S. population
born between 1940 and 2010. In situations where
the classification task is to select the most probable
name for a face from a candidate subset of the 100
names, the procedure is obvious: the pairwise SVM
scores between the name candidates can be directly
employed, as described in Section 6.1.

But what about the situation where the name can-
didates are not included in Names 100? Although we
have the advantage that all training images and name
tags can be crawled from the web, it is still difficult to
learn face models for every existing name in the real
world. It will be nice if we can handle names outside
our Names 100 dataset, so that we can apply our first-
name models to many more real-world situations.
For example, we consider the name-face assignment
problem [17] as shown in Figure 8: an image of a
group of people has first name tags associated with it,
but the exact mapping between the names and faces is

(a) Chris and Dana (b) Barry, Nancy and Andrew
Fig. 8: Illustration of the face-name assignment problem. For an image with
multiple faces and multiple name tags, human can work out the exact
mapping between faces and names at a certain level of accuracy. In (a),
the image contains Chris and Dana, both names suitable for either gender
(though, in this case, Dana is actually the female). There are also more
challenging cases like (b), where the names of “Barry” and “Andrew” may
cause confusion for human to make the correct face-name assignments.

ambiguous. Such a scenario is extremely common in
personal photo collections such as Flickr and Adobe
Albums, and it is valuable to have an algorithm that
associates the name tags with the faces appearing in
the image. Certainly, our set of 100 names may not
include all the person’s names that appear in these
images, thus we need a method that is capable of
dealing with names outside Names 100.

6.5.1 Face-name compatibility
We propose the following method for producing a
face-name compatibility score for a query face i and
any given name n. First, a set of M face images
having the name n are downloaded from Flickr by
the method described in Section 3. Next, following the
procedure of pairwise name attributes computation in
Section 4, we obtain a pairwise name attribute vector
f(m) for each of the M downloaded face images,
and the pairwise name attribute vector f(i) for the
query face. Finally, we define face-name compatibility
score as the median of the cosine similarity scores
between f(i) and f(m) for m = 1, ...,M , which can
be expressed as follows:

Face-name comp. score = median(s1, ..., sM ) (3)

where sm =
f(i) · f(m)

‖f(i)‖2‖f(m)‖2
(4)

The design of this face-name compatibility score
follows a simple intuition: we expect that if the name
and query face are true matches, then the query
face should have a similar pairwise name attribute
representation to the face examples of that first name.
Intuitively, the face-name compatibility score indicates
the compatibility between a putative face-name pair.
We now demonstrate such a face-name compatibility
score works surprising well on the application of face-
name assignment.

6.5.2 Face-name assignment
We use Gallagher’s dataset [17] to evaluate the per-
formance of face-name assignment using our pairwise
name attributes. Our goal is to use our pairwise
name attributes to disambiguate the tags by assigning
names to people based on a single image. Gallagher’s
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Brandon, Vickie Lauren, Jen, Nathan Charlotte (Cathy), Rita, Darlene, 
Cathy (Charlotte), Larry  

Gary, Linda Andrew, Alex 

Aiden, Kathy Tammy, Paige Caroline (Macy), Macy (Caroline)  Mary, Brianna, Aaron, Miles Lisa, Mildred 

Karen, Bonnie Crystal, Mary Spencer (Brady), Cory,  
Brady (Spencer) 

Jillian, Sarah (Charlene), 
Charlene (Sarah) 

Melanie, Julia, Jill 

Fig. 9: Some examples of our face-name assignments. The 3 rows of examples correspond to randomly selected images from Set A, Set B and Set C of the
Gallagher dataset. For each image, the names assigned by our system correspond to the faces in the left to right order. When our face-name assignment is
incorrect, the actual name is highlighted in red.

dataset has 148 images with a total number of 339
faces, where each image contains multiple people and
name tags. This dataset contains 3 sets: Set A images
have independent name pairs that may or may not
have the same gender; Set B contains names that are
less popular and may cause difficulty for human to
perform the name assignment task; Set C contains all
those images from Sets A and B where all people have
the same gender.

Following our dataset preparation procedure in
Section 3, for each of the 154 names in the Gallagher
dataset, we crawled image examples from Flickr. After
the image collection, 151 of these names have more
than 100 face images, while 3 less popular names have
fewer face images (Dolan, Graydon, and Jere have 70,
28, and 97 examples respectively). In the interest of
fast computation, we use 100 training faces for each
of the 151 names, while keeping all the face examples
for the 3 less popular names. Next, as previously men-
tioned in Section 6.5, we compute the pairwise name
attributes for the face images downloaded from Flickr,
which gives a 4950-dimensional attribute vector per
face. For a test face, we also compute its pairwise
name attribute vector, and subsequently obtain the
face-name compatibility score between the test face
and any of the 154 names by Equation (3).

Consider the face-name assignment problem, where
an image contains F people and N first name tags.
There are max(F,N)! possible face-name combina-
tions and our goal is to find the correct face-name
assignment for this image. A simple strategy is to
exhaustively search through all possible face-name
combinations and pick the combination that maxi-
mizes the sum of face-name compatibility scores for
all face-name pairs in the image. As a more compu-
tationally efficient solution, we treat this assignment
problem as a bipartite graph and use the Kuhn-

Munkres algorithm [39], which solves the best face-
name assignment problem in O(max(F,N)3).

In Table 7, we compare the performance of our face-
name assignment algorithm against the method of
[17] on the Gallagher Dataset, as well as the human
performance reported in that paper. From Table 7, it is
clear that our approach significantly outperforms the
method of [17] on the task of face-name assignment.
The reason behind this significant improvement in
performance is because [17] tries to encode the re-
lation between facial appearance and first names via
2 variables (i.e., gender and age). Compared to our
work, we are directly learning the face-name relation
from actual images, thus extending the face-name
relation modeling far beyond the simple “gender +
age” model used in [17]. Even more encouraging, as
tabulated in Table 7, our algorithm is comparable to
(sometimes even better than) the human performance,
which demonstrates that our pairwise name attributes
are extremely powerful for the application of face-
name assignment. Some face-name assignment exam-
ples are shown in Figure 9.

TABLE 7: Accuracy of face-name assignment on the Gallagher dataset.

Set A Set B Set C Overall
Our algorithm 80.1% 78.1% 62.9% 79.9%

Gallagher & Chen [17] 62.2% 56.3% 61.9% 61.7%
Human subject 1 79.2% 81.3% 65.7% 79.4%
Human subject 2 78.2% 68.8% 61.0% 77.3%
Human subject 3 79.5% 43.8% 54.3% 76.1%
Human subject 4 69.1% 53.1% 41.9% 67.6%

Random prior 43.7% 43.8% 45.7% 43.7%

6.6 Unconstrained Face Verification

Face recognition is widely regarded as one of the most
well studied areas in computer vision, yet recognizing
faces under unconstrained environments still remains
an unsolved problem. Unconstrained face recognition
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is challenging, due to the fact that human faces typi-
cally have large variations of poses, illuminations and
expressions. In an effort to drive research forward in
this field, the Labeled Faces in the Wild dataset (LFW)
[40] was proposed as a standard benchmark and
specifically focus on the problem of unconstrained
face verification: classifying whether a given pair of
faces are the same, or are different people. To evaluate
face verification algorithms, 10-fold cross validation is
performed on 6,000 matching and non-matching face
pairs and the classification accuracy is reported.

In [15] Kumar et al. proposed the idea of using
describable visual attributes to model faces. Their
visual attributes include 2 sets of attributes: 1) 73
Facial attributes like “mustache” and “eyeglasses”
that describe the face appearance; 2) Simile attributes
that describe the similarity of a part of a person’s
face to the same part of reference people, e.g., “the
nose of this face is similar to Brad Pitt’s nose”. Kumar
showed that the descriptive visual attributes are effec-
tive tools for performing face verification. Motivated
by their success, we are interested in investigating
the effectiveness of our pairwise name attributes on
unconstrained face verification.

For a given pair of faces x1 and x2 in the LFW
dataset, we first generate the pairwise name attributes
f(x1) and f(x2) for these two faces. The distance
between these two name attribute vectors indicate
whether this pair of faces belongs to the same person.
Then, following Kumar’s approach in [15], we use the
absolute difference |f(x1) − f(x2)| and element-wise
product f(x1) � f(x2) as distance vectors between
f(x1) and f(x2). We train MFSVM (see Section 5)
using these 2 distance vectors with the ground truth
labels provided by LFW, and report 10-fold cross
validation accuracy on face verification. As shown
in Table 8, using pairwise name attributes from 100
names (i.e., a pairwise name attributes vector has 4950
dimensions), we achieve 80.43% accuracy. Encouraged
by this result, we conducted an extended experiment
that uses more first names to implement the name
attributes. Since we have crawled extra face examples
from Flickr for the face-name assignment experiment
in Section 6.5.2, we expand the initial 100 names to a
total of 216 names, using 100 examples per name to
train our pairwise name classifiers. With the extended
216 pairwise name attributes, we can obtain an im-
proved accuracy of 83.42%. To further improve face
verification performance, we use MFSVM to combine
our pairwise name attributes with the low-level LLC
features that were used for name model training, and
achieve 85.05% accuracy.

Compared to Kumar’s visual attributes work, our
name attributes have slightly inferior performance.
However, our pairwise name attributes still perform
quite respectably on the task of unconstrained face
verification, with the following major advantages:

1) For face verification, our scheme only requires

the annotations on pairs of matching and non-
matching faces. The training of pairwise name
attributes require no additional human labeling.
In comparison, Kumar’s 73 facial attributes are
trained with over 10 million hand-labeled ex-
amples, while their simile attributes for the 8
face regions are learned from 60 reference people
from the PubFig dataset [14] that contains a large
number of face images and manual labels. While
their describable visual attributes are effective,
the huge cost of manual labeling introduces a
major difficulty towards the reproducibility of
their work. For our pairwise name attributes, as
our training images and tags are automatically
crawled from the web, we can bypass the expen-
sive human labeling process.

2) Kumar’s describable visual attributes are trained
using 5 different types low-level features, with 3
normalization schemes and 3 aggregation meth-
ods over 10 face regions. In comparison, our
name models are learned with only 1 type of
feature (i.e., LLC encoded SIFT) extracted over
a face pyramid, which greatly simplifies the
attributes training process.

TABLE 8: LFW face verification 10-fold cross validation accuracy

Algorithm Accuracy
Name attributes (100 names) 80.43% ± 0.56%
Name attributes (216 names) 83.42% ± 0.65%

LLC feature 80.75% ± 0.45%
Name attributes (216 names) + LLC feature 85.05% ± 0.54%

Kumar facial attributes [15] 85.25% ± 0.60%
Kumar simile attributes [15] 84.14% ± 0.41%

Kumar facial + simile attributes [15] 85.54% ± 0.35%
Tom-vs-Pete [16] 93.10% ± 1.35%

Tom-vs-Pete + facial attributes [16] 93.30% ± 1.28%

Note that the current state-of-the-art performance
on the LFW dataset is achieved in [16], where Berg
and Belhumeur reported an impressive 93.30% accu-
racy by combining their Tom-vs-Pete classifiers with
Kumar’s facial attributes. For their Tom-vs-Pete clas-
sifier, they selected a set of 5,000 classifiers trained
using 120 labeled human subjects (20,639 labeled face
images) and 11 types of low-level features. Comparing
to their method, our first-name attributes do not need
the hand labeled examples for training classifiers,
therefore our classifiers are trained with “weak labels”
harvested from the web image tags. Besides, for face
alignment, Berg and Belhumeur first detected 95 facial
landmarks and used a piecewise affine transform
procedure, whilst we use a much simpler light-weight
alignment scheme that performs similarity transform
on detected eye locations. Finally, our extracted facial
features are designed to work well on associating first
names with facial appearance, which work well over
a range of applications and are not catered towards
the specific task of face verification.
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Fig. 10: By analyzing the confusion between our first name classifiers and
then embedding the first names into a two-dimensional space, we see that
visually similar names are placed near one another.

6.7 Visualizing Name Relations

We visually explore the similarity between first names
to produce a first name embedding that represents the
visual similarity of the faces having the first names
in our dataset. Some pairs of first names are easier to
distinguish than others. In a sense, first names that are
interchangeable (i.e., pairs of names that perspective
parents were deciding between) should have face
populations that appear to be similar, and should be
close in our embedding.

The first name embedding is accomplished as fol-
lows: A matrix indicating the accuracies of each of the
pairwise name classifiers, after scaling and inverting
so that the most confused name pair has distance 0,
and the most distinct name pair has distance 1, is used
as an affinity matrix for multi-dimensional scaling
(MDS). Following MDS, we apply a force model to
discourage name overlapping for facilitating viewing
in this paper. Figure 10 shows our embedding. Notice
that the horizontal dimension relates to gender (males
on the right) and age corresponds to the vertical axis
(younger names are near the top). Similar names are
placed nearby one another in the embedding. This
name embedding is produced solely as a by-product
of our pairwise name classifiers, and is completely
based on the visual similarity between faces having
the given names.

7 LIMITATIONS

We propose to represent facial appearance as a set
of first name attributes, and demonstrated several
applications. However, our method does have some
limitations which we outline as follows:

• While we showed that correlations exist between
names and facial appearance, directly using these
name-face relationships for predicting the name
of a never-seen face cannot achieve a high accu-
racy. Figure 4 shows that the system makes many
mistakes in predicting the first names, although
we expect that all would agree that guessing
the first name for a never-before seen face is an
extremely challenging problem.

• In contrast to Kumar’s work on describable facial
attributes [15], our first name attributes do not

have semantic meanings. Kumar’s work describe
a face using many semantic attributes such as
“wear glasses” and “brown hair”, while our at-
tributes are first names and hence not semanti-
cally descriptive for attribute-based descriptions.

• For the unconstrained face verification task, our
performance underperforms the state-of-the-art
algorithm of Tom-vs-Pete classifiers [16]. The per-
formance gap is due to the fact that we rely
on automatically mined weakly labeled names to
train the models, and does not enjoy the benefits
of using strong labels as was done in [16].

8 CONCLUSION

In this paper, we consider facial processing by mod-
eling the relation between first names and faces. We
build models for common names and treat first names
as attributes for describing the facial appearance. A
novel face pyramid using Multi-Feature SVM is pro-
posed, which offers improved performance on con-
structing first name attributes. We show the result
that first names can be correctly inferred at rates far
exceeding random chance. We have also described
several practical applications of our name attributes,
including gender recognition, age classification, face-
name assignment, unconstrained face verification and
name relations visualization. Our first name attributes
representation is powerful for performing various
facial analysis tasks, and has the advantage of using
name labels that are freely available from the internet.
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Fig. 11: The average faces of all 100 names in our Names 100 Dataset. Each average face is annotated with the first name, the dominant gender (M for male,
F for female, and N for Neutral), and the expected birth year ± birth year standard deviation.
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